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ABSTRACT
Arthritis is an autoimmune condition marked by pain, swelling, and stiffness in the joints. Despite significant 
progress in treatment options, many aspects of arthritis pathogenesis remain poorly understood, necessitating 
continued research efforts. Animal models have been instrumental in elucidating the complex mechanisms un-
derlying arthritis and in the preclinical evaluation of new treatments. This review article aims to underscore the 
critical importance of animal models by providing a comprehensive overview of their contributions and current 
applications in arthritis research. Animal models, such as genetically modified mice and induced arthritis models, 
offer valuable tools to simulate disease processes observed in humans, enabling researchers to study disease pro-
gression, immune responses, and the efficacy of potential therapies in a controlled laboratory setting. The objec-
tives of this review are twofold: initially, to evaluate various types of animal models utilized in arthritis research, 
highlighting their strengths and limitations, and then, to summarize recent advancements and emerging trends in 
the field. The present review provides researchers and clinicians with a consolidated resource that informs future 
research directions and facilitates the translation of preclinical findings into clinical practice. 
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INTRODUCTION
Arthritis, characterized by acute or chronic joint inflammation, encompasses over 100 rheumatic 
diseases and affects more than 5% of the population, with prevalence rising.1 Around 38% of 
arthritis patients experience disabling symptoms and 42% report severe pain. The four primary 
types of arthritis are osteoarthritis (OA), rheumatoid arthritis (RA), gout, and ankylosing 
spondylitis.1,2 Various animal models, including those that develop spontaneously or are induced, 
are used to study inflammatory joint diseases.3,4 Evaluating antiarthritic agents with these models, 
which have diverse pathogeneses, allows for rapid assessment of their predictive value, aiding in 
the development of new treatments.4

RA is a chronic inflammatory autoimmune disease primarily affecting synovial joints.5,6 Effective 
treatments for arthritis are a major focus in pharmacological research.5 Despite the availability of 
various disease-modifying antirheumatic drugs and biologics, some patients remain refractory to 
treatment, highlighting the need for continued research into RA pathogenesis and new therapeutic 
approaches.5,6 Numerous screening models utilizing both induced and spontaneously developing 
inflammatory processes are critical for identifying agents that can correct the disease in humans.5 
Understanding RA pathogenesis is essential for identifying and evaluating specific drugs.5 
Similarly, OA is the most common form of arthritis, particularly affecting the aging population. 
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Chaves HV et al. used a zymosan-induced arthritis model 
of the temporomandibular joint, resulting in peripheral 
and central inflammation, pronounced facial mechanical 
allodynia, and joint pain.6 Murayama et al. developed a rat 
model of arthritis using rat/hamster antigen-induced arthritis 
(AIA) and studied cytokine and chemokine gene expression 
related to angiogenesis.7 They employed quantitative real-time 
PCR and gelatin zymography to investigate the role of human 
IL-17A in lymphocyte–macrophage glycosaminoglycan  
interactions in human OA.7

Animal models

Animal models are indispensable in arthritis research, 
providing critical insights into disease mechanisms and 
aiding in the development of new therapeutic strategies. 
These models can be categorized into induced models, 
where arthritis is chemically or immunologically induced, 
and spontaneous models, where arthritis develops due to 
genetic modifications, as indicated in Table 1.8,9 The aim of 
this review is to summarize and evaluate the current in vivo 

Table 1: List of arthritis-induced animal screening models.

Type of model Animals 
involved

Research activity 
conducted

Outcomes of research Remarks References

Induced arthritis models
Collagen-induced 
arthritis (CIA)

Mice, 
Rats

Studying the pathogenesis 
of RA, evaluating 
therapeutic interventions

Mimics human RA, joint 
inflammation, cartilage and 
bone destruction

Most widely 
used model, high 
reproducibility

37,38

Adjuvant-induced 
arthritis (AIA)

Rats Screening anti-
inflammatory drugs, 
studying chronic arthritis 
mechanisms

Systemic inflammation, 
polyarthritis, histological 
similarities to RA

Useful for drug 
screening

39,40

Proteoglycan-induced 
arthritis (PGIA)

Mice Investigating autoimmune 
responses, testing biologics

Chronic, erosive 
polyarthritis, similar immune 
mechanisms to human RA

Models 
autoimmune 
aspect of RA

41,42

Collagen antibody-
induced arthritis 
(CAIA)

Mice Studying effector phase of 
arthritis, evaluating rapid 
onset therapies

Rapid joint inflammation 
and destruction, bypasses 
autoimmune priming

Useful for 
studying effector 
mechanisms

43,44

Monosodium urate 
(MSU) crystal-induced 
arthritis

Mice, 
Rats

Investigating acute 
inflammatory response, 
testing anti-gout therapies

Acute inflammation, 
neutrophil infiltration, 
cytokine release

Models acute gout, 
limited chronicity

45,46

Calcium pyrophosphate 
dihydrate (CPPD) 
crystal-induced arthritis

Mice, 
Rats

Studying pseudogout, 
evaluating anti-
inflammatory drugs

Acute joint inflammation, 
neutrophil and macrophage 
activation

Useful for studying 
pseudogout 
mechanisms

47,48

Antigen-induced 
arthritis (AIA)

Rabbits, 
Rats

Investigating antigen-specific 
immune responses, testing 
immunomodulatory drugs

Localized arthritis, 
reproducible inflammation, 
cartilage and bone degradation

Models antigen-
specific responses

49,50

Zymosan-induced 
arthritis (ZIA)

Mice Exploring innate immune 
responses, evaluating anti-
inflammatory compounds

Acute inflammation, 
macrophage and neutrophil 
recruitment

Useful for innate 
immunity studies

51,52

Spontaneous arthritis models
K/BxN mouse model Mice Studying genetic and 

autoimmune aspects of RA, 
testing biologics

Spontaneous arthritis, high 
levels of autoantibodies, 
chronic joint inflammation

Models 
autoimmune 
genetic factors

53,54

TNF transgenic mouse 
model

Mice Investigating the role of 
TNF in arthritis, evaluating 
TNF inhibitors

Chronic arthritis, joint 
inflammation and 
destruction driven by TNF

Useful for studying 
TNF pathway

55

SKG mouse model Mice Exploring genetic 
predisposition to arthritis, 
testing immunotherapies

Spontaneous arthritis, strong 
T-cell involvement, IL-17 
dependent

Models genetic 
susceptibility

56,57

IL-1 receptor antagonist 
knockout (IL-1Ra KO) 
mouse model

Mice Studying the role of IL-1 
in arthritis, evaluating IL-1 
blockers

Spontaneous arthritis, severe 
inflammation, IL-1 driven

Models IL-1 
mediated 
pathways

58,59

TNF: Tumor Necrosis Factor, K/BxN: A mouse model of rheumatoid arthritis generated by crossing KRN T-cell receptor (TCR) transgenic mice (K) with non-
obese diabetic (NOD) mice (BxN), SKG: A mouse model of autoimmune arthritis caused by a point mutation in the ZAP-70 gene, RA: Rheumatoid Arthritis
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studies focusing on the pro-resolving and anti-inflammatory 
actions of therapeutic agents for arthritis and to highlight 
the importance of selecting appropriate models to enhance 
the translational potential of preclinical findings to human 
clinical applications.

Collagen-induced arthritis (CIA)

CIA, or adjuvant arthritis (AA), is the most extensively 
used and well-characterized model of RA. It is induced by 
immunizing susceptible rodents, typically mice or rats, by 
injecting with type II collagen (CII) emulsified in an adjuvant, 
such as complete Freund's adjuvant (CFA), which possesses 
a heat-inactivated mycobacteria at the base of the tail.10 
The primary molecular events in CIA pathogenesis involve 
developing autoimmunity to CII.10 Immunization with CII 
disrupts immune tolerance, leading to the production of anti-
CII antibodies and autoreactive T cells.11 As CII is a crucial 
structural protein in joint cartilage, it becomes a significant 
autoantigen in RA. The anti-CII antibodies form immune 
complexes with CII in the joints, triggering the classical 
complement pathway, producing inflammatory mediators 
like C5a, and attracting neutrophils to inflammation sites.12

Activated T cells, B cells, and other immune cells release 
proinflammatory cytokines such as TNF-α, IL-1β, and IL-6, 
contributing to synovial inflammation, pannus formation, 
and cartilage and bone destruction. Chemokines like IL-8 
and MCP-1 attract more inflammatory cells to the joint. 
These cytokines also promote the proliferation and activation 
of synovial fibroblasts, leading to synovial hyperplasia, while 
angiogenic factors stimulate new blood vessel formation, 
exacerbating inflammation.13 Activated synovial fibroblasts 
and osteoclasts break down cartilage and bone through 
matrix metalloproteinases and cathepsins, with inflammatory 

cytokines like RANKL enhancing osteoclast differentiation 
and activity.14,15

Although CIA replicates many aspects of human RA, the 
molecular pathways involved are not identical, and the model 
has limitations in fully capturing the complex etiology and 
heterogeneity of the human disease. Nevertheless, the CIA 
remains a valuable tool for studying RA pathogenesis and 
assessing potential therapies.16

Collagen antibody-induced arthritis (CAIA)

CAIA is a notable model for studying RA, complementing 
the CIA model [Figure 1]. CAIA is initiated by injecting 
mice with monoclonal antibodies against specific epitopes on 
type II collagen (CII), the main protein in joint cartilage.17 
This method bypasses the need for active immunization 
and autoimmunity development required in the CIA.17 The 
anti-CII antibodies form immune complexes with CII in 
joints, activating the classical complement pathway.18,19 This 
activation produces inflammatory mediators such as C5a, 
which recruits neutrophils and other immune cells. The 
subsequent release of proinflammatory cytokines—TNF-α, 
IL-1β, and IL-6—from macrophages and neutrophils drives 
synovial inflammation, pannus formation, and destruction of 
cartilage and bone. Chemokines like IL-8 and MCP-1 further 
attract inflammatory cells to the joints.17,18

Inflammatory cytokines also stimulate the proliferation 
of synovial fibroblasts, leading to synovial hyperplasia.20 
Angiogenic factors induce new blood vessel formation, 
worsening inflammation. Activated fibroblasts and osteoclasts 
degrade cartilage and bone via matrix metalloproteinases 
and cathepsins, with inflammatory cytokines such as 
RANKL enhancing osteoclast activity.21-24 The CAIA model 
offers several benefits, including rapid arthritis induction, 

Figure 1: Various arthritis screening models.
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avoidance of lengthy immunization, and applicability to 
mouse strains resistant to CIA, thus allowing study across 
various genetic backgrounds.25 Unlike the CIA, the CAIA 
provides a more uniform and predictable disease course but 
lacks the autoimmune and T-cell-mediated responses seen in 
the CIA. Despite these limitations, both models are valuable 
for exploring different disease aspects.26

In CAIA, immune complexes and complement activation 
trigger the release of proinflammatory cytokines and further 
attract inflammatory cells.27 Neutrophils and macrophages, 
activated by these processes, release proteases, reactive 
oxygen species (ROS), and other mediators that damage 
joint tissues.28 This model’s ability to bypass autoimmunity 
development—unlike in CIA—makes it a critical tool for 
studying arthritis onset and progression.29

Crystal-induced arthritis models

Crystal-induced arthritis is an inflammatory condition 
of the joints. The primary types of this condition are gout 
and pseudogout, which result from the accumulation of 
monosodium urate (MSU) or calcium pyrophosphate 
(CPP) crystals in the joints.30 Injecting MSU or calcium 
pyrophosphate dihydrate (CPPD) crystals into mouse 
or rat joints is a standard method for studying the acute 
inflammation of gout and pseudogout.30 These crystals are 
recognized by pattern recognition receptors, including the 
NLRP3 inflammasome, in immune cells like macrophages.30,31 
Activation of the NLRP3 inflammasome leads to the cleavage 
and release of proinflammatory cytokines IL-1β and IL-18.30 
IL-1β and other mediators like leukotriene B4 quickly recruit 
and activate neutrophils, which release proteases, ROS, and 
neutrophil extracellular traps, exacerbating the inflammatory 
response. MSU and CPPD crystals can also directly activate 
alternative complement pathways, producing inflammatory 
anaphylatoxins like C5a, further amplifying inflammation.31 
Additionally, these crystals stimulate the production of pro-
inflammatory eicosanoids, including prostaglandins and 
leukotrienes, through the activation of phospholipase A2 and 
cyclooxygenase enzymes.32 The resultant acute inflammation 
leads to the release of proteolytic enzymes, cytokines, and 
other mediators, causing synovial inflammation, cartilage 
degradation, and bone erosion.32

Crystal-induced arthritis models are valuable for studying 
the initial acute phase of inflammatory arthritis and assessing 
therapies targeting the NLRP3 inflammasome, eicosanoid 
pathways, and other mediators of the crystal-induced 
response. However, they fall short in replicating the chronic 
and progressive nature of human gout and pseudogout. 
Despite these limitations, these models offer important 

insights into the molecular mechanisms of crystal-induced 
joint inflammation and are crucial for developing effective 
treatments.33

Proteoglycan-induced arthritis (PGIA)

PGIA is a prominent animal model for studying RA.34 By 
injecting proteoglycans like aggrecan or decorin into mouse 
or rat joints, this model simulates the chronic inflammation 
and joint destruction seen in human RA.34 It is extensively 
used to investigate RA pathogenesis and evaluate potential 
therapies.35 In the PGIA model, proteoglycan injection 
triggers an inflammatory response characterized by T cell 
and macrophage activation, along with the production of 
proinflammatory cytokines such as TNF-α and IL-1β. This 
process leads to cartilage and bone destruction and the 
formation of pannus tissue, a hallmark of RA.36,37

The PGIA model is used to  study various RA aspects, 
including immune cell roles, cytokine production, and 
therapeutic efficacy.37,38 It is employed to test the effectiveness 
of anti-inflammatory drugs like corticosteroids and NSAIDs, 
as well as biologics such as TNF-α and IL-1β inhibitors.38 
Recent advances in PGIA research include new methods 
for inducing arthritis, such as using recombinant human 
proteoglycans and targeting specific joints like the knee 
or ankle.38 The model is also used to assess the impact of 
environmental factors, including smoking and obesity, on 
RA development and progression. Despite its limitations in 
fully representing the genetic and environmental complexity 
of human RA, the PGIA model remains a valuable tool in 
preclinical research for understanding disease mechanisms 
and exploring potential treatments.39

GENETIC MODELS 
Transgenic and knockout mouse models of rheumatoid 
arthritis

Genetically modified mouse models are essential for 
understanding RA and evaluating new treatments. These 
models involve altering specific genes to mimic key aspects of 
human RA. For instance, the TNF-transgenic arthritis model, 
in which mice overexpress human TNF-α, develops chronic 
and erosive polyarthritis akin to human RA. This model 
has been crucial for demonstrating TNF-α’s role in joint 
inflammation and degradation, leading to the development 
of anti-TNF therapies. Similarly, the K/BxN serum-transfer 
arthritis model, which transfers autoantibodies from K/
BxN mice to healthy mice, induces rapid and symmetric 
polyarthritis.40 This model is instrumental for studying 
autoantibody-mediated inflammation and assessing anti-
inflammatory treatments [Table 2].
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The SKG spontaneous arthritis model features mice with a 
mutation in the Zap70 gene, a vital T-cell signaling molecule, 
resulting in spontaneous autoimmune arthritis.41 This 
model closely resembles the genetic and immunological 
characteristics of human RA and is used to investigate early 
disease stages. The IL-1 receptor antagonist knockout model 
involves deleting the IL-1 receptor antagonist gene, leading 
to spontaneous, destructive arthritis in mice. This model 
highlights the IL-1 pathway's importance in RA pathogenesis 
and is employed to test IL-1-targeted therapies.42

Recent advancements include humanized mouse models 
expressing human HLA alleles and immune cells to better 
replicate RA’s genetic and immunological complexity. The 
use of CRISPR/Cas9 gene editing allows for precise genetic 
modifications, improving the accuracy of RA models.43 

Combining these models with technologies such as single-
cell sequencing and in-vivo imaging offers deeper insights 
into RA's cellular and molecular mechanisms.44

K/BxN spontaneous arthritis model

The K/BxN spontaneous arthritis model is a well-established 
mouse model that mimics key features of human RA. Mice 
expressing the KRN T-cell receptor (TCR) transgene and the 
MHC class II molecule Ag7 (K/BxN mice) develop severe 
erosive polyarthritis spontaneously [Figure 2]. The disease 
onset in this model involves the recognition of a ubiquitous 
self-antigen.45 The KRN TCR identifies a peptide from the 
glycolytic enzyme glucose-6-phosphate isomerase (GPI), 
which is presented on the Ag7 MHC class II molecule. This 
recognition activates GPI-specific CD4+ T cells, leading to the 

Table 2: List of genes and inflammatory models of arthritic activity.

Type of model Type of animal 
used

Specific gene 
evaluated

Activity 
performed

Outcomes Remarks

Collagen-induced 
arthritis (CIA)

Mouse (C57BL/6, 
DBA/1)

IL-1β, 
TNF-α, IL-6

Collagen Type II 
immunization

Inflammatory 
arthritis with joint 
swelling and damage

Widely used, resembles 
human RA

K/BxN serum 
transfer model

Mouse (C57BL/6, 
BALB/c)

TNF-α, IL-1R Transfer of arthritic 
serum from K/BxN 
mice

Rapid onset of 
arthritis, joint 
inflammation

Useful for studying innate 
immune mechanisms

TNF-α transgenic 
mouse

Mouse (C57BL/6, 
TNF-α TG)

TNF-α Overexpression of 
TNF-α gene

Chronic 
inflammatory 
arthritis

Mimics chronic 
inflammation seen in 
human RA

IL-1 receptor 
antagonist knockout 
(IL-1Ra KO)

Mouse (BALB/c) IL-1R Knockout of IL-
1Ra gene

Spontaneous 
arthritis 
development

Highlights the role of IL-1 
in arthritis

Human TNF-α 
transgenic (hTNF-α 
Tg)

Mouse (C57BL/6, 
hTNF-α Tg)

TNF-α Expression of 
human TNF-α 
gene

Progressive 
arthritis, joint 
erosion

Models human RA more 
closely than murine 
TNF-α models

IL-6 transgenic 
mouse

Mouse (C57BL/6, 
IL-6 TG)

IL-6 Overexpression of 
IL-6 gene

Systemic 
inflammation, 
joint swelling

Useful for studying IL-6 
pathway in arthritis

Cartilage oligomeric 
matrix protein 
(COMP) KO

Mouse (129Sv) COMP Knockout of 
COMP gene

Development of 
osteoarthritis

Relevant for studying 
cartilage-related gene 
effects

NF-κB p50 knockout 
mouse

Mouse (C57 
BL/6, p50 KO)

NF-κB p50 Knockout of NF-
κB p50 subunit

Reduced arthritis 
severity

Highlights the role of NF-
κB in inflammation and 
arthritis

HLA-B27 transgenic 
rat

Rat (Lewis, 
HLA-B27 Tg)

HLA-B27 Expression of 
HLA-B27 gene

Development of 
spondyloarthritis-
like symptoms

Models human 
spondyloarthropathies 
like ankylosing 
spondylitis

Proteoglycan-
induced arthritis 
(PGIA )

Mouse (BALB/c, 
DBA/1)

IL-12, IL-18 Immunization with 
proteoglycan

Severe arthritis 
with synovial 
inflammation

Useful for studying 
immune response to joint 
antigens

TNF: Tumor Necrosis Factor, K/BxN: A mouse model of rheumatoid arthritis generated by crossing KRN T-cell receptor (TCR) transgenic mice (K) with 
non-obese diabetic (NOD) mice (BxN), SKG: A mouse model of autoimmune arthritis caused by a point mutation in the ZAP-70 gene, RA: Rheumatoid 
Arthritis, IL: Interleukin, KOBALB/c: A strain of inbred laboratory mice used in immunology and cancer research (KOBALB refers to a specific version), 
DBA: Another inbred mouse strain used for immunological research, including arthritis models
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production of anti-GPI autoantibodies. These autoantibodies 
form immune complexes that deposit in the joints, activating 
the complement system and Fc receptors on innate immune 
cells.46 This activation recruits and activates inflammatory 
cells, such as neutrophils and macrophages, which drive 
synovial inflammation and joint destruction.47 Joint damage 
is mediated by proinflammatory cytokines, chemokines, 
and proteolytic enzymes secreted by activated immune cells, 
directly harming cartilage and bone. Additionally, osteoclast 
activation and increased bone resorption contribute to the 
erosive nature of the disease. Recent preclinical studies with 
the K/BxN model have provided valuable insights into RA 
pathogenesis and therapy evaluation.47

Targeting the complement system, such as by inhibiting C5a 
or its receptor, has reduced disease severity in the K/BxN 
model. Strategies to suppress autoreactive T-cell responses, 
including targeting costimulatory molecules or inducing 
regulatory T cells, have shown therapeutic promise.48 Further 
studies have highlighted additional intervention targets, such 
as the IL-23/IL-17 axis and the NLRP3 inflammasome.48 The 
K/BxN model has also been used to assess the efficacy of 
various biologics, small molecules, and combination therapies 
in preclinical trials. Its ability to replicate autoimmune and 
inflammatory mechanisms underlying RA makes it a valuable 
tool for advancing disease understanding and developing 
new therapies.49

Human TNF-α transgenic (hTNFtg) mice

The hTNFtg mouse model is crucial for studying TNF-α's 
role in RA and evaluating TNF-targeted therapies. This 
model involves genetically modifying mice to express the 
human TNF-α gene, resulting in systemic overproduction 
of this proinflammatory cytokine. This genetic modification 
mimics the elevated TNF-α levels found in RA patients and 
triggers joint inflammation.50 In the hTNFtg model, mice 
spontaneously develop chronic, erosive polyarthritis that 
closely resembles human RA. The arthritis is marked by joint 
inflammation, synovial hyperplasia, cartilage destruction, and 
bone erosion, reflecting the progressive nature of the disease 
in humans.51 Excess TNF-α not only directly drives these 
inflammatory processes but also stimulates the production 
of other proinflammatory cytokines, such as IL-1β and IL-
6, which further aggravate joint inflammation. Additionally, 
TNF-α enhances osteoclast differentiation and activation, 
leading to bone erosion, a key feature of RA. Overall, the 
hTNFtg model offers valuable insights into TNF-α-mediated 
pathways in RA and is essential for testing and developing 
therapies targeting TNF-α and its downstream effects.52

Preclinical studies in hTNFtg mice

The hTNFtg mouse model is crucial for evaluating potential 
RA therapies. Engineered to overexpress human TNF-α, 

Figure 2: Schematic representation of K/BxN spontaneous arthritis model. CIA: Collagen-
induced arthritis, KRN: T-cell receptor transgenic mice, often used in autoimmune arthritis 
research, MHC: Major Histocompatibility Complex.
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this model has demonstrated the efficacy of anti-TNF 
agents like infliximab and etanercept in alleviating arthritis 
symptoms. These findings directly contributed to the clinical 
development and approval of anti-TNF therapies for RA.53

The hTNFtg model has also been key in investigating 
downstream pathways involved in RA.54 For example, 
inhibiting IL-6 signaling with anti-IL-6 receptor antibodies 
has shown promise in reducing joint inflammation and 
damage.54 Similarly, targeting the Janus Kinase (JAK/STAT) 
Signal Transducer and Activator of Transcription pathway, 
which mediates cytokine signaling, has been effective in 
slowing arthritis progression in this model. Studies have 
explored combination therapies, revealing synergistic 
effects when combining agents such as anti-TNF and anti-
IL-6 therapies.54 This approach underscores the potential 
benefits of multitarget treatments for enhanced efficacy 
in RA. Additionally, the hTNFtg model has facilitated 
research into novel therapeutic targets, including the NLRP3 
inflammasome and the IL-23/IL-17 axis, highlighting them as 
potential future interventions.55,56

Advantages of rodent  screening models in arthritis 
research

Animal models, especially rodent models like CIA, are vital for 
investigating the mechanisms and pathology of various types 
of arthritis, including RA and OA. These models replicate key 
symptoms of human arthritis, such as joint inflammation, 
tissue destruction, and autoantibody production.57

Beyond studying pathogenesis, animal models are crucial 
for the preclinical evaluation of new anti-arthritic drugs, 
biologics, and other treatments before human trials.58 
Additionally, these models help predict potential toxicity and 
assess the safety of novel therapies. Identifying safety concerns 
early allows for better dosing strategies in human trials.59

Challenges in translating findings from rodent arthritis 
models to human treatments

Rodent models have been crucial for studying arthritis, 
particularly RA, but they cannot fully replicate the complexity 
and variability of human RA.60-63 Differences in disease onset, 
chronicity, severity, histopathology, and therapy responses 
highlight their limitations in modeling human disease, which 
is influenced by diverse genetic and environmental factors.64 
The translational success rate from animal studies to human 
treatments remains low, with many potential therapeutics 
failing in human trials despite success in animal models.65,66 
While rodent models like CIA and adjuvant-induced arthritis 
are widely used for their ability to mimic key aspects of 
human RA, they have limitations. They may not fully capture 
the complexity and heterogeneity of human disease.67 

Although rodent arthritis models provide valuable insights, 
their limitations highlight the need for enhanced human-
relevant research methodologies to advance RA treatment 
strategies and bridge the gap between preclinical findings and 
successful clinical outcomes.68-73

To address these challenges, there is a need to shift toward 
research methods that more accurately reflect human immune 
responses and disease mechanisms.66 Balancing the use of 
rodent models with an increased focus on human-relevant 
research approaches is essential for developing more effective 
therapies tailored to human RA complexities.66,68

Future directions

There is an urgent need for models that more accurately 
replicate human arthritis, such as humanized mice with 
human genes linked to the disease and organ-on-chip 
technology that mimics human joint microenvironments. 
These innovations can offer a more precise platform 
for studying disease mechanisms and testing potential 
therapeutics. Integrating multiple models can also enhance 
our understanding of arthritis. For example, using both CIA 
and CAIA models concurrently can help researchers explore 
both autoimmune initiation and effector phases of RA. 
Combining mechanical injury models with genetic models 
may provide insights into post-traumatic OA. Advanced 
imaging techniques, like MRI and PET scans, enable real-
time visualization of disease progression and treatment effects 
in animal models. Identifying and validating biomarkers that 
correlate with human disease can improve the prediction of 
clinical outcomes.

Moreover, developing models that represent various arthritis 
subtypes and comorbidities, such as cardiovascular disease 
and metabolic syndrome, can offer a more comprehensive 
approach to understanding and treating arthritis in patients 
with multiple health conditions. Adhering to the 3Rs 
principles—reduction, refinement, and replacement—is 
crucial for ethical and scientific progress. This involves refining 
existing models to minimize animal suffering, reducing the 
number of animals used through better experimental design, 
and replacing animal models with alternatives like in vitro 
systems and computational models when feasible.

CONCLUSION
Animal models have been crucial in arthritis research, 
providing essential insights into disease mechanisms and 
aiding in the development of potential therapies. Models such 
as CIA and CAIA have greatly enhanced our understanding 
of RA, while models for OA and crystal-induced arthritis 
have shed light on other forms of arthritis. Despite their 
limitations, these models are vital for preclinical research 
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as they replicate key aspects of human disease. However, 
inherent limitations, such as differences in genetics, immune 
system function, and disease pathogenesis between animals 
and humans, restrict the direct translation of findings. The 
complexity and heterogeneity of human arthritis cannot be 
fully captured by any single model, resulting in variability in 
predicting therapeutic outcomes. Consequently, the success 
rate of translating discoveries from animal models to effective 
human treatments remains low.
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